Care este formula indicelui mișcării direcționale (DMI) și cum se calculează? - KamilTaylan.blog
2 mai 2021 1:12

Care este formula indicelui mișcării direcționale (DMI) și cum se calculează?

Legendarul comerciant și autor J. Welles Wilder Jr. a introdus semnale false. DMI este de fapt doi indicatori standard diferiți, unul negativ și unul pozitiv, care sunt trasați ca linii pe același grafic. O a treia linie, indicele direcțional mediu sau ADX, este nedirecțională, dar prezintă forța de mișcare.

Există o formulă diferită utilizată pentru fiecare dintre cei trei indicatori. DMI este construit pe un raport dintre mediile mobile exponențiale sau EMA, ale mișcărilor ascendente ale prețurilor (U), ale mișcărilor descendente ale prețurilor (D) și ale adevăratei game a prețurilor (TR). Acestea sunt adesea exprimate într-o ecuație ca EMAUP, EMADOWN și EMATR.

Calculele pentru diferitele EMA sunt complexe și numeroase. Odată găsite, ele pot fi folosite pentru a calcula mișcarea direcțională sau DM, pentru orice interval de timp selectat. Intervalul standard este de 14 perioade. Valoarea returnată a DM poate fi pozitivă (+ DM), negativă (-DM) sau zero.

Mișcarea direcțională negativă (-DM) se calculează astfel:

Mișcarea direcțională pozitivă (+ DM) se calculează astfel:

+DM=EMAUPEMATRwhere:EMAUP = Exponential moving average of upwardprice movementsEMATR = Exponential moving average of the truerange of prices\ begin {align} & + \ text {DM} = \ frac {EMAUP} {EMATR} \\ & \ textbf {unde:} \\ & \ text {EMAUP = Media mobilă exponențială în sus} \\ & \ text { mișcări de preț} \\ & \ text {EMATR = Media mobilă exponențială a adevăratei} \\ & \ text {gama de prețuri} \\ \ end {align}(…)+DM=EMATR

Odată ce aceste valori generează randamente, ele ajută la formarea indicelui direcțional (DX), care se calculează ca:

Odată găsită valoarea DX, indicele direcțional mediu (ADX) este calculat ca:

ADX=EMADXn-12n+1(DXn-EMADXn-1)where:EMADX = Exponential moving average ofdirectional indexDX=Directional indexn=Time interval\ begin {align} & ADX = \ frac {EMADX_ {n-1}} {\ frac {2} {n + 1} (DX_n – EMADX_ {n-1})} \\ & \ textbf {unde:} \\ & \ text {EMADX = Media mobilă exponențială de} \\ & \ text {index direcțional} \\ & DX = \ text {Index direcțional} \\ & n = \ text {Interval de timp} \\ \ end {align}(…)ADX=n+1

Graficul reflectă valorile + DI, -DI și ADX pe parcursul intervalului de timp.